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The hydrodynamic stability of an ideal mixture of two viscous, dissimilar liquids 
contained between two concentric rotating cylinders is analyzed. The basic 
flow of the mixture is determined by coupling the mass and momentum equations 
with an equation for the equilibrium concentration distribution. Infinitesimal, 
axisymmetric disturbances are assumed, and the disturbance equations are 
written for the limiting case of large Schmidt numbers (no diffusion). 

The presence of density and viscosity variations leads to a twelfth-order 
eigenvalue problem with two-point boundary conditions that has the appearance 
of it combined Taylor and density-stratified shear flow problem. A numerical 
technique is devised to determine the stability boundary and to calculate Taylor 
numbers and oscillation frequencies for different growth rates. 

It is found that very small mean density gradients alter the critical Taylor 
number and that oscillations occurring in both the growing and neutral solutions 
are the dominant mode. 

1. Introduction 
stratified 

density distribution or a multicomponent mixture has increased substantially 
in recent years. Such problems concern geophysical phenomena of the atmo- 
sphere and the ocean, mixtures of dissimilar liquids and gases, and flows with 
temperature gradients. In  his book, Yih (1965) discusses a wide range of topics 
dealing with heterogeneous fluids. 

This paper describes the investigation of the hydrodynamic stability of a 
mixture of two different fluids contained in the annulus of two concentric 
rotating cylinders, where a partial separation of the fluids occurs its the result 
of centrifugal effects. This problem may arise in journal bearings, rotating pumps, 
drilling operations, and other situations involving unstable circulation in hetero- 
geneous liquids. 

Essentially, the heavier component tends to migrate towards the outer cylinder 
and a concentration gradient is developed across the annulus. The steady-state 
and transient solutions of this problem have been reported by Kulinski (1966) 
but, to date, no quantitative analysis of the stability of such a flow has been 
attempted. One may say that the presence of the heavier fluid on the outside is 

The interest in heterogeneous fluid flow problems with either 
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somewhat analogous to the static problem of a lighter fluid on top of a heavier 
one, a situation known to be stable. On the other hand, an inviscid analysis of 
rotating fluids reveals that if the product of the density and the square of the 
circulation decreases outward, the flow is unstable (see Lin 1955). We investigate 
this combined effect of a stabilizing density distribution and a destabilizing circu- 
lation distribution in a viscous medium. 

The hydrodynamic stability of homogeneous viscous flow in the annulus of 
two concentric cylinders was first successfully investigated, both theoretically 
and experimentally, by Taylor (1923). He showed that, at  a given value of a 
parameter (later called the Taylor number) a secondary motion of cellular 
toroidal vortices appears. Chandrasekhar (1961) reports the early contributions 
in this area. Later, more complete solutions for the arbitrary gap Bize problem 
with axisymmetric disturbances were carried out by Sparrow, Munro & Jonsson 
(1964) for a large spectrum of radius ratios and angular velocity ratios. At 
the same time, Harris & Reid (1964) solved the small-gap problem numerically 
over the entire range of possible velocity ratios for axisyrnmetric disturbances. 
More recently, Krueger, Gross & DiPrima (1966) defined the regions of validity 
for the assumption of axisymmetric disturbances. Synder (1 968) established this 
result experimentally and gave critical velocity ratios for several radius ratios. 

The first solution of Taylor’s problem with variable density and three-dimen- 
sional disturbances was obtained by Yih (1961) for the small gap. The density 
variation in a liquid was induced by a temperature gradient across the gap. 
Yih showed that the necessary and sufficient condition for inviscid stability, i.e. 
d(pr2)/dr > 0 (where p is density and I’ circulation), is neither necessary nor 
sufficient when viscosity and thermal conductivity are taken into account. 
A more recent paper by Walowit, Tsao & DiPrima (1964) considers the effect 
of a temperature gradient over a large gap. 

In  the present investigation of a mixture of two dissimilar fluids, the hetero- 
geneity is produced by a component separation caused by rotation rather than 
by a temperature gradient. The density gradient is, therefore, governed by the 
Schmidt number rather than the Prandtl number. Since the Schmidt number 
for liquids is several orders larger than the Prandtl number, the relative lack of 
mass diffusion on a short time basis could produce an instability similar to that 
occurring in a parallel shear flow of continuously stratified fluid when mass 
diffusion is neglected. Yih (1965) shows that, for this case, oscillatory solutions 
are present when the stratification is induced by either a temperature gradient 
or gravitational forces. 

In  fact, in our present problem, one would expect a combination of the Taylor 
problem and the stratified shear flow problem, i.e. an unfavourable circulation 
distribution that tends to produce instability, but the instability may be oscil- 
lating as in the stratified problem. The solution is treated as a Taylor problem 
because it is the combined effect of constituent separation and the onset of the 
Taylor instability that is of interest. 
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2. Development of general equations 
Before proceeding with the stability analysis, the equations governing the 

flow of a binary mixture are established in a form suitable for investigating the 
effects of perturbations of density and viscosity from a two-fluid standpoint. 
The main assumptions that govern the problem formulation are: (i) no chemical 
reactions, sources, or sinks are present; (ii) no temperature gradients or body 
forces exist; (iii) the two liquids are miscible and the mixture is ideal, i.e. we 
assume that the Amagat-Leduc law for liquids holds and that the fugacities of 
the components equal their partial pressures; (iv) the mixture is Newtonian; 
(v) linear irreversible thermodynamics defines the constitutive equation for 
the diffusion mass flux and the usual viscous stress tensor (this is certainly 
valid for linear instability studies where only infinitesimal perturbations of the 
variables are considered); and (vi) the density of the mixture is a function of 
concentration alone. 

With these assumptions, the conservation equations of specie, mass, and 
momentum for multicomponent systems (see, for example, DeGroot & Mazur 
1962) can be rearranged as 

P div V* + - div J* = 0, 
P h  . _  

Dv* = -gradP*+divT*, 
p" Dt 

where C* and J* are the mass fraction and the diffusion mass flow of component 
a of a system of two components denoted by subscripts a and b :  P* is the pres- 
sure; D/Dt is the material derivative with respect to time; V* is the mass aver- 
aged velocity of the mixture; V,*, p t  and V z ,  p: are the individual velocities and 
local densities of components a and b ;  cc* is the usual viscous stress tensor; pa - 
and pb are the densities of pure components a and b;  and p* 
point in the mixture. In these equations, 

1 
c* = ma/m P = (Pb--Pa)/Pa, 

p*v* = Pb* v; + P,* v,*, 

P* = P b m  +PC*)7 
p,* = c*p*, p; = (1 -C*)p*, 

J" = p,*(V,* - V*), 

where ma is the mass of component a, and m is the mass 
details of the particular arrangement of equations (1) to 
Saric (1968). 

is the density at any 

(4) 

of the mixture. The 
(3) are contained in 

To complete the formulation of the governing equations, the constitutive 
relations for viscous stress, mass diffusion, and viscosity are required. The 
viscous stress tensor retains its usual form by virtue of Curie's theorem. In tensor 
notation, 

7; = hV;,,aLi+/A(v~i+ V,*,J, (5) 
5-2 
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where p is the dynamic viscosity of the mixture and h is the bulk viscosity. Mass 
diffusion is due only to pressure and concentration gradients. With the use of the 
Onsager reciprocal relations and the Gibbs-Duhem relation, the mass diffusion 
equation may be written 

J* = -p*Dab [grad C* + &!!E (1 + MC*) (1 - C*) C* grad P*] , (6) 

where Dab is the binary diffusion coefficient, considered constant; Rg is the uni- 
versal gas constant; 8 is the temperature; Ma is the molecular weight of compon- 
ent a ;  and M = (Nb-Ma)/Na. The viscosity, assumed to be a function of con- 
centration alone, is given by an Eyring formula (see, for example, Hirschfelder, 
Curtiss & Bird 1954) : 

where pa and 
are their mole fractions. In  terms of mass fractions, we have 

PbRg* 

log p = [a log pa + f ;b  log (7) 

are the viscosities of the two pure components and 5, and gb 

For specific mixtures, a polynomial correction in powers of G* can be added 
to (8) to give a better fit. Kulinski (1966) gave an example of this for a water- 
glycerol mixture. 

The non-dimensionalization of the governing equations is accomplished by 
reference to a circular Couette flow in the annulus of two rotating cylinders with 
inner and outer radii of R, and R,, respectively, and inner and outer angular 
velocities Q, and Q,. The properties of the mixture are referenced t'o the homo- 
geneous (well-mixed) values of concentration, density, and viscosity. We 
define (? as the mass fraction of component a in the thoroughly mixed solution 
with f = $(e) and j3  = j3(8). Then 

(9) 

c = c*, J = J*R,/Dabp^, P = P*/PRiO:, 

V = V*/R,Q,, r = r*/R,, t = t*Q2,, 

i"c = p*p,  p = 7 = 7*;LI1, 

where asterisks denote dimensional quantities. 
Upon substitution, (1) to (4) and (6) become 

Pp̂  DC -p--divV = 0,  
P b  Dt 

div(V+EJ) = 0, 

1 
adP+-  div7, Tb p- = -gr 

DV 
Dt 

J = -p(grad C + QTfgrad P), 

1 +p8 
p = , , p C *  
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Two non-dimensional groups are recognized as 

and 

S = $/Dab: Schmidt number 

T = RiQ?/P: Taylor number, 

where the definition of T follows that of Sparrow et al. (1964). In addition, we 
introduce the notation 

d=-- - - -  ppDab - '' : inverse diffusion Reynolds number, 
P b R i Q l  PbSdT 

@ =  - separation potential, 
P b % W  

f =  ( l+MC)( l -C)C.  

The roles of and e are discussed in 8 3 and 4. 

3. Basic flow 
The basic flow of the system is steady and in thermodynamic equilibrium. 

If variations in tangential and axial position are also neglected in (10) to (13) 
and the condition of J = 0 for equilibrium is applied, the general flow equations 
reduce to 

dCo/dr = - @!PfoporQ~,  (15) 
- d [ , u O r 3 2 ]  = 0, 
dr 

where subscript 0 denotes basic flow quantities, r is the radial co-ordinate, and 
po and ,uo are given by (14) and (8) with C = C,. Equation (15), which results 
from the condition of thermodynamic equilibrium, states that, when steady state 
has been reached, the diffusion due to a concentration gradient just balances the 
baro-diffusion term. A comparison with equations and relationships that 
govern specie separation in a centrifuge suggest that CD is proportional to the 
ratio of the sedimentation coefficient to diffusivity, hence the net separation 
potential. Consequently, we refer t o  Q, as the separation potential. 

The non-dimensional boundary conditions are 

Qo = 1 at r = R,/R2, 

Q 0 =  Q2 at r =  1, 

Cordr = &?[1- (R1/R2)2] S' RJRB 

The first two conditions are apparent from the geometry, while the third ex- 
presses a macroscopic conservation of species. It should be noted that, in the 
usual case of constant viscosity, (16) can be integrated immediately to give 
Qo = A +I?/?. However, since viscosity is dependent on concentration, the 
flow field will be concentration-dependent. 

Equations (15) and (16) were integrated numerically, and the results compare 
favourably with Kulinski (1966) when the notation is adjusted. We have chosen 
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the average concentration of the mixture, 6', rather than the concentration at  
the inner cylinder, as the controlling parameter. In  addition, Kulinski chose 
the case of the stationary inner cylinder, which is stable to the Taylor type of 
instability. All the basic flow calculations were conducted with the velocity ratio 
Q2,/Q, equal to 0.53 and a radius ratio RJR, equal to 0.75. These are typical values 
used by Sparrow et al. (1964) for the homogeneous case. In  addition, they offer a 
fair chance for significant specie separation. Figure 1 illustrates the effect of 

1 .o 

0.95 

0.8 

0.75 

Concentration defect (C- 8) x lo3 

FIGURE 1. Change in concentration as aAfunction of radius for different values of QT 
where ,uu,/,ua = 50, p = 1.35, M = 2.75, C = 0.85, pa = 1.26, and P b  = 2.96. QT: 0 ,  0 ;  
0, 0.01; A, 0.02; 0, 0.05. 

(DT on the concentration distribution with all other parameters held constant. 
The relatively small amount of centrifuging is due to our choice of liquids (e.g. 
a mixture of 85% glycerine and 15% tetrabromoethane has a separation 
potential @ = 0.7 x 10-8 at T = 0.2 x lo7). As subsequent results show, very 
little separation is needed to demonstrate the effects of density stratification on 
the hydrodynamic stability. 

Substantial concentration dependence of the velocity profile can be expected 
for large viscosity ratios. Figure 2 illustrates the effects of viscosity changes on 
the velocity profile when the Eyring formula, (71, is used. Component a is always 
the lighter fluid and the angular velocity Qs is the standard constant viscosity 
profile QS = A + B/r2. When ,u,l,ub > 1, the mixture is more viscous toward the 
inner cylinder, giving rise to a larger velocity gradient in the radial direction, 
thus producing the 'positive' bulge. Por this case, the velocity distribution shifts 
toward solid body rotation. If the reversal is assumed, i.e. ,u,/,ub < 1 (conditions 
are unchanged except that the heavy fluid is more viscous), the mixture has a 
higher viscosity toward the outer cylinder and a lower velocity gradient. Figure 
3 illustrates this result on the actual velocity profile with a large value of @T. 

Finally, the variation in density is of the same order as the variation in 



Stability of circular Couette flow of binary mixtures 71 

concentration, except in the opposite sense. When the quantity C- 6 is small, 
the density equation (14) can be rewritten 

Actually, it  is the small density change that produces the effects outlined in the 
following sections. 

Velocity defect ( R - Q,) x lo3 
FIGURE 2. Change in angular velocity as a function of radius for different values of @T:  
0, 0.01; A, 0.02; 0, 0.05. Side (a ) :  = 1.35, M = 2.75, 6 = 0.85. Side ( b ) :  
pa/pb = 0.02, /3 = 1.35, M = 2.75, C = 0.15. 
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Angular velocity R/R, 
F I G ~ E  3. Angular velocity as a function of radius for different viscosity ratios. 
QT = 2 , p a / ~ b  = 0.029 8 = 0.15; CI, QT = 2, ,Ua/pb = 5 0 , 8  = 0.85; - , p a / p b  = 1  
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4. Perturbation equations 
To analyze the stability of the system of equations (10) to (14) with respect to 

infinitesimal, axisymmetric disturbances, we express each dependent variable 
as a sum of a stationary value (basic flow) and a perturbation quantity. We let 

Equations (18) are substituted into the axisymmetric form of (10) to (14), the 
squares of perturbation quantities are neglected, and the basic flow is sub- 
tracted to give 

A solution of (19) will be sought in terms of a superposition of normal modes of 
the form 

u’(r, x ,  t )  = u(r )  exp (;ax + d), (20) 

where CT is generally complex. The other perturbation quantities are represented 
in a similar functional form. The r-dependent function of a perturbation quantity 
uses the same symbol without the prime. Furthermore, since p, ,u and f are 
known functions of C, they are expanded about Co and their perturbations are 
replaced by perturbations in C. Hence, 
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The substitution of (20)  into (19) leaves only derivatives with respect to r which 
are represented by the notation: 

d a 1  
dr * -- dr r 

D = - ,  D --+-. 

Substituting ( Z O ) ,  (21), and (22) into (19) and eliminatingji and jLfrom (19b) by 
the use of (19f) and (19g), we obtain the governing differential equations for the 
perturbations : 

@p,(vc + UDC,) = D* u + iaw, (23a)  
Pb 

D, u + iaw = E (D* [Po ( n c  +fO@ - Dfo ~ DCoc)] - a2po(c +fop)]  > (23 b )  
f n  

D(2pnDu) +D[ho(D, ZL + iaw)]  

PO 
r 

+ po ia(Dw + iau) + 2 - (Du - u / r )  

po(Dw - w/r) + - rDQnc - p 0 ' o 2 w  po(vw + urD, !2, + UQ,) = 
dCn dfn 1 

df  + 2  - DQ0c+ 2 b  (Dw - w/r) 
dC0 r 

1 
Tz p,pw = - iap + 7 {D,[p,(Dw + iau)] - 2,uoa2w + h,ia(D, u + iaw)). ( 2 3 e )  

The dominant dimensionless groups in (23) are the Taylor number and the 
Schmidt number. For most liquid mixtures, AS' - lo5- lo6 while Ti N lo3. 
Therefore, since /3 N 10, and E - the right-hand side of equation ( 2 3 b )  
is very small. We are, therefore, interested in the limit as E -+ 0,  i.e. we restrict 
the density changes to pure convective changes. The density changes are carried 
out by the perturbation velocities alone, since the momentum diffusivity v is 
much larger than the mass diffusivity Dab. The limit E 3 0 implies, however, a 
singular perturbation and a first-order solution obtained by putting e = 0 is 
valid only for small time. This is precisely the region of interest in linear stability 
since only the initial time behaviour is sought. It should be noted that the classical 
linearization of (1) to (3) is, in itself, a singular perturbation valid for small times 
only. 

Indeed, several earlier investigators of stability of stratified flow (cf. Yih 
1965) neglected mass diffusivity. Kulinski (1966), in his analysis of the transient 
Couette flow problem of a heterogeneous fluid, compares the short time scale 
required for establishing the velocity profile to the long mass diffusion scale 
required for the final concentration profile. 

Letting e -+ 0 and eliminating c, p ,  and w from ( 2 3 ) )  we can write the perturba- 
tion equations as 

- 

( 2 p n Q n ) ~  = ~ o a  ( :  1 +- fow2 /v2  ) , " z  --D(poD*u) 

1 
a2 Tz +---i (DD* - a2) [p0(DD* - a2)] u - 2a2 [D(rfW) u],  (240) 
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where 

and 

The boundary conditions governing the differential equations are, to order 6,  

given by 

The condition on the concentration perturbation 

u = Du = v = 0 at r = R,/R,, 1. (27 1 

cannot be satisfied because of the nature of the singular perturbation implied 
by e + 0. However, the conditions that c = 0 at r = RJR, and 1 are satisfied by 
(23a), and Kulinski (1966) shows that (28 )  is satisfied to order [Co( 1 )  - Co(R,/R,)] 
in this case. The calculations shown in figure 1 illustrate that this is adequate. 

Equations (24)  may be analyzed more conveniently by rewriting them in 
terms of a sixth-order equation in the complex variable u alone. In operator 
form, we can write this single equation in u as 

L,&L+ L2uu + L,u + L,(l/a) u = 0, (29) 

where L,, L,, L, and L, are second, fourth, sixth, and second order, respectively 
and are given as 

Ll = p o T  
Po 

L, = - TB [(DD, - a2) [po(DD, - a2)] + 2a2D2p, 

- 2Qo [p,(DD, - a,) + (Dp,) (D - l / r ) ]  DD, - a2 +*'D,)]), 
Po 

[po(DD* - a2) + Dpo(D- l/r)] 

1 
r2 

- - D(r3DR0Dpo) - rDQoDpoD 

The coefficients of the operators are functions of the basic flow and the axial 
wavelength. Hence, they are real but not constant. If one takes the case of no 
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density change (p = 0)) L, is identically equal to zero. Since L, has the form of 
the classical Taylor problem in this case, (24) reduces to the problem discussed 
by Sparrow et al. (1964) with u = 0. 

When density changes are included, a non-oscillatory neutral solution with 
u= 0 is not possible because of the singularity. We must then consider both 
real and imaginary parts of u and real and imaginary parts of u. This is a direct 
result of the neglect of diffusion because the density perturbations can only relax 
themselves through the formation of an axial wave. When 

0- = ur+iui, (30) 

the exponential factor in the perturbation variables can be rewritten 

[exp ( u,t)] [exp i(az + u, t ) ] ,  and (a2 + cri t) 

can be considered as a wave form or oscillation. Because heterogeneous shear 
flow problems are known to have oscillatory solutions, the complete formulation 
requires consideration of real and imaginary parts of the velocities 

u = U,+iUi, v = v,+iv,. (31) 

After substitution of (30) and (31) into (24) and (27)) a twelfth-order differential 
system of real functions results. 

u, = Du, = u, = ui = Dui = uui = 0 at r = RJR,, 1. (34) 

The problem now is to find the values of T and ui which will lead to the solution 
of (32) and (33), once a, ur, @, R,/R,, and Q,/sZ, are prescribed. A minimum 
value of T can be found by varying the parameters a and ur. Of course, any 
two of these parameters can be considered eigenvalues of the differential equation. 
However, @, R,/R,, and a,/Q, are physical constants; the values of a for mini- 
mum T will be close to those found by Sparrow et al. (1964), and ur will generally 
be zero. Therefore, T and ui are the logical choice for independent eigenvalues. 

The solution of the system of equations (32) and (33) with boundary conditions 
(34) follows Lanczos (1961) and is essentially the same technique employed by 
Sparrow et al. (1964) and Harris & Reid (1964). It involves choosing six linearly 
independent trial values each of D2ur, D2ui, D3u,, D3ui, Dv,, Dv, a t  r = R,/R,, 
and generating six linearly independent solutions, ui (j = 1, . . . , 6 ) ,  by forward 
integration. To satisfy the boundary conditions (34) at r = 1, a system of six 
homogeneous algebraic equations of the form &.Ai = 0 results. The coefficients 
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in the equations, At, consist of the six trial solutions (j) described and the six 
boundary conditions (k) of the form 

Ai = 9 ( 1 ) ,  A; = ~ { ( l ) ,  A$ = Du;(l), ..., 
A{ = ~{( l ) .  

The determinant of the coefficients, det (At), will vanish if, and only if, the 
eigenvalues have been properly chosen. Hence, to obtain the eigenvalues we must 
find the zero of the function 

(35) 

after the other parameters, i.e. a, a,, Rz/QZ,, R,IR,, ,8, M ,  CD, 6 and pa/pb, have 
been specified. Equation (35) is calculated as a surface which touches the det = 0 
plane only at  unique values of T and a+ The calculation procedure uses a Gauss 
elimination technique that continuously renormalizes and diagonalizes the 
determinant. A numerical check on the accuracy of the results was performed by 
repeating a typical calculation on two computers having different accuracies. 
The first was an IBM 360-40 with six significant figures and the second a CDC- 
6600 with 31 significant figures. The results agree to three places. 

det = det (T, gi) 

5. Results and discussion 

The results of one such calculation are shown qualitatively in figure 4 for 
Equations (32) and (33) were integrated for a number of different conditions. 

CD = 0.7 x lo-'. 

Solutions exist only for the particular combinations of T ,  G ~ ,  and g,  given 
by this curve. The homogeneous solution is given by the @ = 0 curve and 
lies wholly in the a; - T plane. The departure from aperiodic motion occurs 
in the neighbourhood of a, = 0.015. The oscillation frequency appears to decrease 
asymptotically towards zero with ai = 0*0001 being the cutoff value with which 
to determine any substantial change with ai. As the neutral point (ar = 0) is 
approached, the Taylor number decreases and the frequency increases to a maxi- 
mum value of 0.0112. 

The oscillatory motion is due mainly to the restoring force of the pressure 
gradient in the presence of a stable density stratification. When a lighter fluid 
particle is displaced toward the heavier fluid, the pressure gradient drives it 
back toward the centre and vice versa. In  the absence of diffusion, either in this 
case or in other cases of density stratification, (23a)  shows that density perturba- 
tions must be carried along disturbance streamlines in the radial direction and 
cannot be transmitted axially. Hence, when the radial velocity disturbance 
is positive, buoyancy effects tend to drive the particles toward the centre and, 
when the radial velocity is negative, the particles are driven toward the outside. 
These restoring forces coupled with the axial periodicity of the radial velocity 
give rise to the oscillations. 

Figure 5 is a projection of the T = T(a,, ai) curve on the T - a, plane. At 
a Taylor number of 27.0 x lo5, CD = 0.7 x corresponds to a density change 
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of 0.05 % and CD = 2.5 x lo-* corresponds to a density change of 0.25 yo. These 
modest changes in density decrease the growth rate by, respectively, 15 % and 

The intersections of the dotted lines with the solid lines indicate where gi $. 0. 
If ci were forced to equal zero, the particular curves would follow the dotted lines 
and become singular at  a, = 0. 

45 yo. 

T X  105 

FIGURE 4. Taylor number variation with b, and cri. 

34 c 

Growth rate 0; 

FIUURE 5.  Taylor number as a function of growth rate with constants of figure 1. 
0, (D = 0 ;  A ,  (D = 0.7 x 0, (D = 2.5 x 
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0 2 4 6 

Separation potential CD x lo8 

FIGURE 6. Critical Taylor number as a function of separation potential with rr = 0 
and the constants of figure 1 .  A ,  ,uLa/,ub = 75 ; 0, ,ua/,ub = 50. 

0.04 

0.03 

0.02 

0.01 

J 
Separation potential CD x los 

FICVRE 7. Critical oscillation frequency as a function of separation potential for different 
radius ratios with a, = 0 and the constants of figure 1. 0, RJR, = 0.95, fiz/Ql = 0.85; 
W, R,IR, = 0.95, Cl.Ji2, = 0.68; 0, RJR, = 0.75, Cl,/Ql = 0.53; 0 ,  RIIRZ = 0.75, 
fi,/Q, = 0.42; A ,  RJR, = 0.5, fi,/fi, = 0.24. 
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The critical Taylor number of the homogeneous case, T, and its corresponding 
critical wave-number as have been tabulated by Sparrow et ab. (1964). The 
critical wave-number a for which T is a minimum, experiences some variation 
from as as the curves move away from the neutral point and the homogeneous 
curve. The dominant a term in (32) and (33) is a2T. After a Tnew has been de- 
termined on the basis of as, the corresponding anew is given approximately by 
anew = aS(s(Ts/Tnew)4. This approximation eventually minimizes Tnew, which is 
rather insensitive to small changes in wave-number. Therefore, the final value 
of T,,, is close to that found by using as, even though anew may change by 10 yo. 

Figure 6 shows that for ,uu,/,ua > 1,  the critical Taylor number increases with 
separation potential and with viscosity ratio. The stabilizing effect of higher 
viscosity ratios is due to the fact that the velocity profile tends more toward 
solid body rotation, i.e. a more stable circulation distribution as shownin figure 3. 

Figure 7 shows the change in the corresponding critical oscillation frequency 
with separation potential for different radius ratios, RJR,, and velocity ratios, 
fi,/R,. The values for RJR, = 0.95 are generally an order of magnitude higher 
than those for RJR, = 0-75. The critical Taylor number at  RJR, = 0.95 varies 
from 1.376 x lo8 (a = 0) to 1-805 x los (a = 2-5 x a change of more than 
31 yo. These large changes are due to the greater magnitude of Taylor number 
a t  this radius ratio. Representative density changes for RJR, = 0.95 are of the 
order of 5 %. 

6. Conclusion 
We have shown that, in the absence of diffusion, a mixture of two fluids in a 

circular Couette flow geometry exhibits a new kind of Taylor instability to  
axisymmetric linear disturbances.This instability is characterized by the forma- 
tion of axial waves as the fundamental unstable mode. 

The presence of small density stratification (approximately 0.05 yo change 
across the gap) due to centrifuging causes (i) oscillations a t  frequencies that 
increase with increased component separation; (ii) a stabilizing effect when 
density changes alone are considered; and (iii) a stabilizing effect when the lighter 
fluid is more viscous and a destabilizing effect when the converse is true. 

The solution technique developed is able to predict quantitatively the stability 
of a two-component rotating Couette flow for any gap size, for any angular velo- 
city ratio, and for any liquid mixture where the behaviour of the density and the 
viscosity is consistent with the governing assumptions. 

We speculate that the secondary unstable modes, which include asymmetrio 
waves, would be shifted substantially from the fundamental mode because the 
growth rate is much lower than in the corresponding homogeneous case. The 
next step should be the inclusion of asymmetric waves. This would test the 
axisymmetric assumption and would determine the limit of negative angular 
velocity ratio for axisymmetric disturbances. 
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